Putting a Shunt Into a Preemie Baby Brain
Childs Nerv Syst. 2010; 26(11): 1505–1515.
Ventriculosubgaleal shunt procedure and its long-term outcomes in premature infants with post-hemorrhagic hydrocephalus
Vaner Köksal
oneRize 82. year Government Hospital, Neurosurgery Clinics, Kayseri, Turkey
Suat Öktem
2Department of Neurosurgery, Erciyes University Medical Schoolhouse, Kayseri, Turkey
Received 2009 Dec 28; Accustomed 2010 February xix.
Abstruse
Objective
It is well known that 10–xv% of hydrocephalus cases at babyhood and 40–50% in premature infants, occur following Germinal matrix hemorrhage (GMH). Such hemorrhages are reported to arise due to the rupture of germinal matrix (GM) vessels as a result of cerebral blod flow changes among infants with <1500 g birth weight and <32 weeks old. Intraventricular hemorrhage (IVH) associated with GMH leads to a disruption in the cerebrospinal fluid (CSF) and ventricular dilatation. Ventriculosubgaleal shunt (VSGS) is preferred in those hydrocephalus cases because it is a elementary and rapid method, precludes the demand for repetitive aspiration for evacuation of CSF, establishes a permanent decompression without causing electrolyte and nutritional losses, and aims to protect the cerebral evolution of newborns with GMH.
Fabric and method
The present study comprises 25 premature cases, subjected to VSGS and diagnosed with mail service-hemorrhagic hydrocephalus (PHH) arising from IVH associated with GM, and low nativity weight (LBW) in the Neurosurgery Department of the Medical Faculty of Erciyes Academy between July 2002 and September 2006. VSGS surgery was performed on those cases, and their clinical and radiological prognoses were monitored with regard to several parameters.
Results
Bloodshed and morbidity results were found to be lower than those in PPH treatment methods. While prognosis of grade iv GMHs was poor, grades 2 and 3 GMHs displayed a much ameliorate prognosis after VSGS forth with complete recovery in some hydrocephalus cases.
Keywords: Germinal matrix hemorrhage, Hydrocephalus, Ventriculosubgaleal shunt
Introduction and objective
Currently, there is still no consensus over the optimal treatment of hydrocephalus cases occurring equally a result of germinal matrix hemorrhage amidst premature infants with low birth weight. Therefore, this patient group, comprises the cases that are about difficult to treat in Intensive Intendance Units. In hydrocephalus treatment required at that period, applying VSGS prior to the placement of a permanent shunt, is reported to be beneficial. In low-cal of this recommendation, we aim to investigate VSGS treatment in cases with post-hemorrhagic hydrocephalus and its contribution to the hydrocephalus prognoses.
Material and method
The present study comprises 25 premature cases, subjected to VSGS and diagnosed with post-hemorrhagic hydrocephalus (PHH) arising from IVH associated with GM and LBW in the Neurosurgery Department of the Medical Faculty of Erciyes University between July 2002 and September 2006. Those cases were subjected to surgery 28 times, among which, the procedure was repeated due to VSGS dysfunction in one case and because of meningitis in two cases.
GMH and hydrocephalus diagnoses of the cases were established in light of the routine ultrasonography (US) performed in the newborn unit of measurement. GMHs were studied in four grades based on the classification (Fig.1) of Papile et al. [one].
-
Hemorrhage is limited with the germinal matrix
-
There is an IVH but no ventricular dilatation
-
There is IVH associated with ventricular dilatation
-
There is a diffuse parenchymal hemorrhage
As a result of the monitoring of the head circumferences (HC) of the cases; in cases who exhibited an enlargement of more than 2 cm and tense fontanelles along with apnea and bradycardia, VSGS operation was decided upon determination of ventricular dilatation by US. All the cases diagnosed by United states were monitored by brain computed tomography.
-
Gender
-
Nascency age (weeks)
-
Birth weight (BW)
-
Head circumference measurements were measured at birth, before and subsequently VSGS, and before and after VPS.
-
GMH were classifed based on grades.
-
Exposure to mechanic ventilation and asphyxia were investigated since it elevates cerebral ischemic impairment.
-
VSGS and VPS timings are determined according to the clinical and radiological findings.
-
Complications during VSGS including CSF leak from incision site, migration of catheter to the subgaleal pouch, slippage of the catheter into the ventricle, evolution of meningitis, and intraparenchymal and subdural hemorrhage, were investigated.
-
Clinical status after the clinical interventions was classifed in iii dissimilar groups depending on the neurological conditions of the survived cases: a adept overall condition (ones with a skilful overall health), mild neurological sequelae (mildmotor paresias), and severe neurological deficits (e.m. inability to concur one's head upright, sit, presence of a motor deficit as plegia, etc.). The reasons backside mortality were investigated in lost cases.
-
The cases were monitored radiologically by computed tomography (CT); Changes in the cerebral cortices were observed on CT images taken after VSGS and VPS (Fig.2).
The method of ventriculosubgaleal shunt
Subgaleal shunt procedure was performed after 2–3 h of fasting, under 1–2 cc local anesthesia (2% prilocaine hydrochloride) and mild sedation (1.5% sevoflurane) without intubation and by nasal oxygen support in operating room settings or intensive care unit of measurement (two cases).
Approximately 1.5 cm peel incision was used from the right corner of the anterior fontanelle (Fig.3). Periosteum was reached. Post-obit the determination of periosteum, subgaleal dissection was started with instruments having a blunt tip. As a result of the autopsy, an area of at least x × 10 cm, which was located towards the temporal and parietal bones, extending to the well-nigh afar ear lobe laterally and vertex posteriorly, was reached. Thus, a large pocket was established by separating galea from the periosteum (Fig.3(3)).
The margin of the incision was pulled towards the fontanelle every bit to expose the dura, and the vascular structures localized in the route of the ventricular catheter to be inserted, were cauterized by bipolar cauterization (Fig3(4)). A hole was opened by a small incision, and a ventricular catheter, approximately 3-cm long, was inserted into the right lateral ventricle (Fig.3(6)). The catheter was fixed to the dura, cut off 5–6 cm externally, and placed into the subgaleal pouch without using a metal musical instrument (Fig.iii(8)). No valve was employed during the procedure (Fig.3(ix)). The patients were not allowed to lay on the correct temporal surface in order to encourage subgaleal collection. Depending on the condition of the scar, sutures were removed postoperatively at viii–10 days.
-
Tension in subgaleal fluid pouch (Fig.four)
-
Poor subgaleal drove
-
An increase beyond physiological limits in HC
-
No increment in HC, but elevation in ventricle volume shown by imaging methods.
-
Clinical presence of intracranial pressure rising.
-
Persistence of hydrocephalus from prematurity to maturity.
For VPS procedure, burr hole and the same incision or a new posterior i, were used. In cases that received VPS posteriorly, the former anterior catheter was removed through a small incision on the scar. Full general prognosis and specially the dependency for shunt were investigated co-ordinate to the clinical monitoring of the cases that received VSGS. Windows SPSS program was used along with Chi-square and Spearman correlation tests.
Results
The present written report comprises 25 premature cases, subjected to VSGS, and diagnosed with PHH arising from IVH associated with GM and LBW in the Neurosurgery Department of the Medical Faculty of Erciyes University betwixt July 2002 and September 2006. Seventeen (68%) of our cases were female person and eight (32%) were male person. In terms of age groups, two were 25–26-calendar week-sometime, eight 27–28-week-old, 5 29–30-week-former, five 31–32-week-former, and again five 33–34-year-erstwhile, whereas the mean birth age was 29.2 weeks. Nascency weights varied between 740 and 1,930 grand (mean one,342 ± 338 g). Based on monitoring values, VAs prior to VPS, varied between i,900 and iv,300 thou (ii,434 ± 615 g) (Fig.5).
The head circumferences of the cases varied from 29.5 to 39.5 cm at birth (mean 32.89 ± 2.50 cm). HCs of the cases earlier VSGS procedure, varied between 33.v and forty.0 cm (mean: 37.42 ± 1.70 cm), whereas, during VPS procedure, HCs were found to be between 33 and 45 cm (mean 38.69 ± three.27 cm).
The cases that were being monitored in the premature unit and showing abnormal increases in terms of HC, were subjected to ultrasonography (US). The cases with a detected GMH, were graded according to the classification of Papile et al. as follows: 1 with no grade, 8 grade two, thirteen grade 3, and 4 class four. Eight of the cases had experienced asyphyxia at nascency. Among those 8 cases, four demonstrated course 4 GMH, whereas the other iv exhibited form 3 GMH.
Afterward stabilization of the vital signs of our cases within a menstruum of 16–lxxx days (mean 33.08 ± 15.4 days), VSGSs were placed. Subsequently that, VPS was performed on fifteen cases at the end of a period varying between 27 and 92 days (mean: 44.53 ± 17.31 days). No intervention was practical in three cases that did not receive VPS due to resolution of the clinical profile of hydrocephalus. The iii cases without shunt were observed to demonstrate no hydrocephalus recurrence. The remaining seven cases without shunt, died. 3 VPS cases out of fifteen did not prove any VPS dysfunction, whereas half dozen of the remaining 12 cases displayed shunt meningitis, and the other six received renewal of ventricular catheters due to shunt obstruction. Among cases with meningitis development, we removed VPS and waited until the stabilization of the CSF profile with extraventricular drainage (EVD). 3 of the cases with shunt meningitis demonstrated recurrence.
Eight (32%) of the VSGS cases were institute to have no acceptable CSF collection in the sulgaleal pouch during monitorization. In 3 of those, adhesions within the subgaleal space were cleaned, and a new subgaleal pouch was created. Thus, since 2 of those iii cases were receiving meningitis treatment, their ventricular catheters were renewed, besides. Other five cases with no collection were subjected to VPS past assuming that they have reached the adequate body weight.
Postoperatively, none of the cases were allow to lie on the dissection site in society to preclude re-adhesion of subgaleal pocket and help maintenance of adequate CSF drainage. However, because of lying on the same hemisphere, an increase in the anteroposterior (occipitofrontal) diameter of the cranium was observed similar to that seen in cases with sagittal synostosis. Therefore, craniums were immobilized past placing them onto circular pads created manually from dressings and cotton. Thus, the spherical form of the attic was maintained.
Amid cases with VSGS, vii (28%) had CSF leak from the incision site, whereas 1 (4%) had migration of catheter from the ventricle, i had slippage of catheter into the ventricle, and two (viii%) had meningitis. Meningitis cases were also the cases demonstrating CSF leakage. One example exhibited subdural hemorrhage at postoperative 15 days. In the instance with a catheter migrated into the ventricle, only the catheter was removed due to arrested hydrocephalus.
Following VSGS, the patients were monitored as inpatients in the corresponding departments for ane–6 months then as outpatients during 4–24 months. Seven of the cases were lost during the newborn unit care. Causes of mortality are outlined in Fig.half dozen. No mortality was observed at surgery.
Every bit a result of the 2-twelvemonth monitorization of the cases and in light of the general neurological examination results of the survivors, half-dozen cases were establish to have balmy neurologic sequelae, whereas the remaining six were plant to exhibit severe neurologic sequelae. During follow-up, vi cases with resolved hydrocephalus had normal cerebral cortex thickness forth with presence of class 2 GMH. In patients with mild neurologic deficits, ventriculomegaly appearance was still present. The cases with heavy neurologic deficits had irregular ventricle contours and loculations filled with cystic CSF (Fig.7).
Statistical results
The results were analyzed with respect to the correlation between GMH grades and survival (χ 2 = 4.33, p > 0.05, n = 25). Our study had no grade 1 instance. Of the grade ii cases, 100% survived, whereas 38.5% of class 3 cases were lost and 61.5% were survived. 50% of grade 4 cases were lost, while 50% survived first, only lost in the following days. According to the correlation assay (r = −0.415, p < 0.05), the survival rate was found to be reduced as the grade elevated.
The correlation between hydrocephalus prognosis and GMH grades was analyzed, as well (χ 2 = 5.264, p > 0.05). While 12.v% of grade 2 cases showed an increase in ventriculomegaly, 50% showed a normal cognitive cortex devleopment. As 38.5% of grade 3 cases exhibited an increase in ventriculomegaly, the increase in cerebral cortex thickness was 15.four%. Of the grade 4 cases, 50% demonstrated ventriculomegaly, whereas none of the cases had cerebral cortex development. In the correlation analysis (r = −0.426, p = 0.034), the prognosis was observed to worsen as the form elevated.
While 25% of cases with a body weight (BW) of 500−i,000 grand were observed to survive, 77% of cases that were one,000−one,500 g, and 87.v% of cases that were i,500−2,000 thou were plant to survive, as well. No statistically significant correlation was determined between the BW and survival (r = 0.27, p < 0.05). Every bit the BW at nascence rises, survival elevates.
Give-and-take
Currently, in hydrocephalus handling, shunt systems that enable drainage of CSF to some other body cavity in order to reduce the intracranial pressure level caused past the collection of CSF fluid in the ventricle, are the about widely preferred methods. However, new handling options are investigated because premature newborns demonstrate more complications associated with VPS systems. Premature newborns constitute the patient group that requires the nigh hard care. VSGS process is known to be preferred in those cases due to restoration of permanent ventricular decompression without causing electrolyte and nutritional losses [2]. Handling of hydrocephalus occurring after IVH has been tested with various methods by many clinical studies. However, although known for more than 100 years, VSGS process is observed to be employed at a much less rate compared with the others [3].
Why VSGS (ventriculosubgaleal shunt) ?
Despite the consideration that adequate CSF drainage might not be achieved by VSGS even in premature cases with low birth weight, having a cerabral cortex thickness below 1 cm along with large ventricles on the ultrasound image, ventriculoperitoneal shunt (VPS) was non preferred over VSGS due to the post-obit prerequisites needed for the VPS process: presence of a mature immune system and an adequate absorption capacity of the belly, effective elimination of blood products from the CSF flow in the ventricular system, and sufficient thickness of subcutaneous tissue. During the improvement of those parameters, the most of import parameter that tin can exist monitored is torso weight. Therefore, it is commonly agreed that body weight should exist waited to surpass two,000 g before attempting the procedure [2, 4]. During that period, a permanent solution with minimal damage potential is needed to protect the weakened cognitive parenchyma from the effects of elevated intracranial pressure and to forbid possible complications.
It is known that repeated ventricular taps and lumbar punctures in premature newborns, might increase the risk for meningitis. Similarly, external ventricular drainage systems betrayal the intraventricular surround to the outside, and afterward those cases with weak immune systems are subjected to infection risk. Moreover, they may lead to overdrainage problems. Information technology is even reported that those three methods could crusade metabolic disorders associated with the loss of CSF, protein, and electrolytes.
Furthermore, the subcutaneous ventricular reservoir arrangement has been establish to be an inappropriate method for premature infants without subcutaneous tissue. Because of repeated punctures from the reservoir aiming for aspiration, the pare covering the reservoir can be easily damaged. Information technology is reported to be frequently complicated with infection and necrosis on the peel [five, 6].
Timing of VSGS practice on premature infants with hydrocephalus is a contentious issue in the literature with only two studies stating clear opinions. Willis et al. report this elapsing as xxx days (4.2 weeks), whereas Fulmer et al. limited it equally 28 days (4 weeks). In the present written report, VSGS was performed afterwards an average period of 35.04 days following birth. The boilerplate value was elevated due to poor vital signs of some patients and their care with ventilator support.
Performing VPS at an early on period on premature PHH cases is reported to be associated with elevated shunt infection rates alongside high shunt obstruction rates [7]. Taylor et al. published a serial of 36 cases in 2001 and advocated that VPS should exist performed late on premature infants considering of the need for clearance of ventricle from blood products which takes at least v weeks. Because VPS was applied after a hateful menstruum of 42 days on their cases and ix (25%) of the 36 cases demonstrated a shunt obstruction, they had to apply 21 revisions [eight]. They did not perform any procedure during that 42 days in order to protect the white thing effectually the ventricle from increasing intracranial pressure. However, grade 4 premature infants may prove abrupt changes in their clinical weather, and hydrocephalus can develop very rapidly [7, nine]. Under these circumstances, early VPS procedure is recommended [2, 3, 7, viii]. Authors suggest that VPS should non exist practical until the baby reaches the two,000 m trunk weight, and CSF level decreases below 1,000 mg/dl [3, 8].
Similarly, Levy et al. performed VPS in PHH treatment of premature cases and reported 83% shunt obstruction, whereas Lin JP et al., McCallum et al., and Scarff et al. noted shunt obstacle rates as 89, 94, and l%, respectively [xi–15]. In the present written report, 24% of our cases demonstrated an obstruction at the proximal end of the VPS after the procedure and those catheters were replaced. Obstruction complexity of ventriculoperitoneal shunt in PHH treatment is observed to take a lower incidence because it is performed afterwards VSGS.
In the literature, when VSGS fails in treatment of the hydrocephalus among premature cases with LBW and PHH, VPS practice is reported on patients that are considered to attain the adequate maturity [5, 9, 10, xvi]. Tubbs et al. [17] reported the VPS timing or VSGS stay length equally 37.4 days, whereas Fulmer et al. advocated this length to be at to the lowest degree 1 month in newborns with IVH because of the need for clearence of intraventricular debris [16, 17]. In the nowadays study, VPS was performed afterwards a hateful period of 44 days. It may announced to be late according to the literature information, withal, we waited for our cases to reach the 2,000 g body weight.
In the literature, complications seen during monitorization of cases with VSGS are CSF leakage from the incision site, meningitis, migration of the catheter from the ventricle or its slippage into the ventricle, and intraparenchymal hemorrhage [five, 9]. The charge per unit of CSF leakage from the incision site has been reported to be 16.6% by Willis et al. [9], 4.7% by Tubbs et al. [17], 5% by Fulmer et al. [5], and 32% by Sklar et al. [eighteen]. In the present report, the rate of CSF leakage from the incision site was 29% (seven cases), which was within the upper limit of the hateful value of results reported in the literature. We believe, by paying more than attending to the surgical closure technique, this complication may exist reduced.
The rate of infection complexity associated withVSGS is reported to be 66.7% by Willis et al. [9], 5.9% past Tubbs et al. [17], 0% by Fulmer et al. [5], and 10% past Sklar et al. [xviii]. Rahman et al. [xix] reported no infection evolution after carrying out VSGS and VPS procedures on 15 premature infants with PHH and a birth weight below 1,500 g. Moreover, in the absenteeism of VSGS treatment, the infection rate after early VPS treatment in premature infants with PHH was establish to be increasing from 20 to 50% by Vinchon et al. [20] and every bit 45.2% past Reinprecht et al. [2]. Infection rates of other methods used in PHH treatment in big series in the literature are reported to be 15.9–16.four [21] in subcutaneous reservoir method and ten–27% in EVD method [22]. Richard et al. [23], placed Ommaya reservoir in 64 cases and reported complications (pulmonary problems, meningitis, sepsis and hemorrhage) in 30 of them, whereas noted the overall infection rate as 21.viii%. In the present written report, infection rate was 8%, which was consistent with the literature data on VSGS. Moreover, our outcome was constitute to be considerably lower than the infection rates of other treatment methods reported in the literature [20–24].
Other complications are rarely mentioned in the literature. Evolution rate of a new intraparenchymal hemorrhage has been noted to be 1.1% (ii cases) by Tubbs et al. and 5% (i case) by Fulmer et al. [5].
Moreover, bloodshed associated with shunt has been noted to be a outcome of that during which hemorrhage occurs because of the rupture of fragile corticomeningeal arteries and veins due to rapid intraoperative decompression in the weakly myelinized neonatal encephalon under pressure level [5]. However, Fulmer et al. [5] and Tubbs et al. [17] noted the multifocal origin of intracerebral hemorrhage in their studies. While Fulmer et al. did not employ valve in their VSGS procedures, Tubbs et al. [17] employed distal slit valve that enables one-mode CSF flow to the subgaleal pouch, and suggested that intraparenchymal hemorrhage could be associated with that. Newborns subjected to VPS may present with that rare complication as a event of acute ventricular decompression [5, 17]. Moreover, Richard et al. provided fibrinolytic treatment to 17 cases in their study and reported four mortalities due to fatal diffuse hemorrhage [23]. In the nowadays serial, no intraparenchymal hemorrhage complication was observed after the VSGS procedure because no valve was inserted into the used catheters, and the wound was airtight earlier assuasive excessive CSF drainage. Moreover, one of our cases demonstrated a cerebral subdural hemorrhage that was observed xv days afterward the VSGS (Fig.8). Prior to the insertion of the ventricular catheter, because of inadequate cauterization of the dura it will pass through and the gradual venous hemorrhage in the newborn with a depression intracranial pressure, formation of chronic subdural hematoma was considered. No such complexity has been described in the literature.
Slippage of the catheter into the ventricle or its migration from the ventricle has been reported only by Fulmer et al. [5] in ane (5%) case. In the current study, similarly, one (four%) case exhibited slippage of the catheter into the ventricle, whereas in some other case the entire catheter migrated into the subgaleal space. Fulmer et al. [five] removed the catheter that slipped into the ventricle and performed a VPS procedure. In our instance, the catheter was removed under endoscopic guidance, and by considering the hydrocephalus arrested, no other shunt intervention was found to be necessary (Fig.9). We carried out VPS in the other example where the catheter was migrated into the subgaleal space.
In the literature, the rate of mortality for cases with VSGS is reported to be 16% by Willis et al. [nine], nine% by Tubbs et al. [17], 12% by Sklar et al. [18], and 20% past Fulmer et al. [5]. However, at that place is no detailed information provided on the causes of those mortalities. In the present study, mortality rate was found to exist higher. The fact that grade 3 and 4 cases constituted the bulk of the cases in our study may exist the reason behind that. Linder et al. [25] conducted a written report including 641 cases and lost 86 (13.four%) of the premature newborns with LBW, whereas 36 of the cases in their written report had grades 3 and 4 IVH and 27 (75%) of those exhibited mortality. Kadri et al. performed a report in which they lost 86% of the cases with grade 3 GMH and 100% of the cases with grade 4 GMH [7].
VSGS revision has been performed in 52 (28%) of 185 cases by Tubbs et al. [17] and in 5 (25%) of xx cases past Fulmer et al. [5]. In both series, the but reason behind revision was the adhesion development in the subgaleal pouch, however, there was no obstruction in the intraventricular catheter. Particularly those adhesion scars are reported to ascend from infected debris [five, 17, 21]. In revision surgery, in cases where the catheter is non obstructed, a simple dissection on the subgaleal pouch is reported to be plenty [17]. In our series, revision was applied in three cases against subgaleal adhesions. These results show consistency with those in the literature.
In terms of needing no permanent VPS, while Willis et al. [9] reported a charge per unit of 16.half-dozen% (one example), Fulmer et al. [5], Sklar et al. [eighteen], and Rahman et al. [19] noted a rate of 20% (four cases), 11% (seven cases), and 20% (three cases), respectively. In the current study, the rate of cases requiring VPS was 12% (three cases). Our outcome was consequent with the literature.
Permanent VPS is reported to be necessary in the treatment of PHH generally seen in premature infants at a rate varying between 60 and 85% [24, 26–30]. While Willis et al. [9] plant this rate every bit 83.4%, Tubbs et al. [17], Fulmer et al. [5], Sklar et al. [eighteen], and Rahman et al. [nineteen] reported it as 84, 75, xc, and 75%, respectively. Moreover, shunt dependency occuring after other PHH treatment methods is reported to be 64–78% following EVD and 75–88% subsequently subcutaneous reservoir utilize [21, 22, 31, 32]. In the current study, shunt requirement was found to be 60%. The low charge per unit of shunt demand is due to the loss of some cases with VSGS who needed VPS during the monitorization period.
The monitoring of PHH cases after VPS is reported to demonstrate 33% shunt infection complication by Fulmer et al. [five]. In our study, shunt infection rate was 24%. Linder et al. [25] reported a mortality of 75% amidst cases with grades 3 and 4 GMH. Kadri et al. [7] noted the distribution of bloodshed rates over GMH grades as follows: 38% for course 1, 66% for course two, 86% for form 3, and 100% for grade 4. In the current study, while mortality charge per unit amidst cases of grade two was 0%, it was 38.v% for class three and 50% for grade 4 cases. Those results were not consistent with the literature. The reason behind that inconsistency is the inadequacy of daily temporary CSF drainage applied through LPs until the VPS procedure against hydrocephalus in the study of Kadir et al. forth with the contribution of VSGS in prognoses of our cases. In the following controls, we lost all our grade 4 cases in compliance with the literature, whereas prognosis among our cases with grade four GMH, was found to be poor.
Generally, survival rate of cases with GMH and IVH is reported to exist 25–75% in the literature [33–35]. Kazan et al. [3] reported the bloodshed rate of IVH associated with GMH in premature newborns, with or without surgery, as 38%. Kadri et al. [7] monitored 126 cases and reported 70 (55.v%) losses. In the electric current study, when post-VPS period was also included in the monitorization, 52% (13 cases) were found to be lost during monitoring, which was a result consistent with the literature. All findings were compared with the literature in Table1.
Table i
Sklar et al. [eighteen] | Rahman et al. [19] | Fulmer et al. [5] | Tubbs et al. [17] | Willis et al. [9] | Our work 2007 | |
---|---|---|---|---|---|---|
Case number | 62 | fifteen | xx | 185 (71 PHH) | 6 | 25 |
Birth historic period (week) | 29.viii | 29.1 | 27.v | 29.32 | ||
Birth weight (g) | ane,560 | i,724 | 980 | 1,342 | ||
Preop head circumference (cm) | 34.ane | 33.6 | 35.2 | 37.42 | ||
VSGS timing | 28 mean solar day (iv weeks) | thirty day (four.ii weeks) | 33.08 day | |||
VSGS infection (%) | 10 | 0 | 5.ix | 66.7 | 8 | |
CSF leakage (%) | 32 | 5 | four.seven | 16 | 28 | |
Intraparenchymal hemorrhage (%) | 5 | 1.ane | 0 | |||
VSGS died (%) | one.6 | xx | 9 | 16 | 28 | |
Permanent shunt requirement (%) | 90 | 80 | 75 | 84 | 83.iv | sixty |
VSGS stay (day) | 35.1 | 37.iv | 44 | |||
VSGS revision | v (25%) | 52 cases (28%) | 3 (12%) | |||
VPS infection at follow | five (33%) | 6 (24%) | ||||
VPS does non need permanent | half-dozen (ix%) | iii (xx%) | 4 (twenty%) | xvi.6% | 3 (12%) |
Conclusıon
-
Rates of infections and their complications are lower than those of other PHH treatment methods in the literature.
-
If hydrocephalus persists when the BW exceeds 200 g in those cases, then VPS insertion is appropriate.
-
Performing VSGS without permanent VPS in cases with grades one and 2 GMH, can suffice in hydrocephalus treatment.
We believe, in order to provide a better quality of life and protect the weak cerebral tissues from the detrimental effects of hydrocephalus in newborns with grades ane, two, and three PHH, performing VSGS procedure would be appropriate.
Open Access
This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial apply, distribution, and reproduction in whatsoever medium, provided the original writer(southward) and source are credited.
References
1. Papile LA, Burstein J, Burstein R, Koffler H. Incidence and evolution of subependymal and intraventricular hemorrhage: a report of infants with nativity weights less than ane,500 gm. J Pediatr. 1978;92(iv):529–534. doi: 10.1016/S0022-3476(78)80282-0. [PubMed] [CrossRef] [Google Scholar]
two. Reinprecht A, Dietrich Due west, Berger A, Bavinzski G, Weninger M, Czech T. Posthemorrhagic hydrocephalus in preterm infants: long-term follow-up and shunt-related complications. Kid'south Nerv Syst. 2001;17:663–669. doi: 10.1007/s00381-001-0519-ii. [PubMed] [CrossRef] [Google Scholar]
3. Kazan S, Güra A, Uçar T, Korkmaz Eastward, Ongun H, Akyuz One thousand. Hydrocephalus after intraventricular hemorrhage in preterm and low-birth weight infants: analysis of associated take a chance factors for ventriculoperitoneal shunting. Surg Neurol. 2005;64:S2:77–S2:81. doi: 10.1016/j.surneu.2005.07.035. [PubMed] [CrossRef] [Google Scholar]
4. Horinek D, Cihar Chiliad, Tichy M. Current methods in the handling of posthemorrhagic hydrocephalus in infants. Bratisl Lek Listy. 2003;104(xi):347–351. [PubMed] [Google Scholar]
5. Fulmer BBMD, Grabb PAMD. Neonatal ventriculosubgaleal shunts. Neurosurgery. 2000;47(1):80–84. doi: 10.1097/00006123-200007000-00018. [PubMed] [CrossRef] [Google Scholar]
half-dozen. Hudgins RJ, Boydston WR, Gilreath CL. Treatment of posthemorrhagic hydrocephalus in the preterm infant with a ventricular access device. Pediatr Neurosurg. 1998;29:309–313. doi: x.1159/000028744. [PubMed] [CrossRef] [Google Scholar]
seven. Kadri H, Mawla AA, Kazah J. The incidence, timing, and predisposing factors of germinal matrix and intraventricular hemorrhage (GMH/IVH) in preterm neonates. Childs Nerv Syst. 2006;22:1086–1090. doi: 10.1007/s00381-006-0050-6. [PubMed] [CrossRef] [Google Scholar]
viii. Cinalli G. Alternatives to shunting. Childs Nerv Syst. 1999;15:718–731. doi: 10.1007/s003810050461. [PubMed] [CrossRef] [Google Scholar]
9. Willis BK, Kumar CR, Wylen EL, Nanda A. Ventriculosubgaleal shunts for posthemorrhagic hydrocephalus in premature ınfants. Pediatr Neurosurg. 2005;41:178–185. doi: 10.1159/000086558. [PubMed] [CrossRef] [Google Scholar]
x. Mc Cullough D (1985) Hydrocephalus: treatment. In: Rengachary South, Wilkins R (eds) Neurosurgery, pp 2140–2150
11. Taylor AG, Peter JC. Advantages of delayed VP shunting in post-haemorrhagic hydrocephalus seen in depression-birth-weight infants. Child'southward Nerv Syst. 2001;17:328–333. doi: ten.1007/s003810000429. [PubMed] [CrossRef] [Google Scholar]
12. Roland EH, Hill A. Intraventricular hemorrhage and posthemorrhagic hydrocephalus. Current and potential future interventions. Clin Perinatol. 1997;24:589–605. [PubMed] [Google Scholar]
13. Levy ML, Masri MS, McComb JG. Result for preterm infants with germinal matrix hemorrhage and progressive hydrocephalus. Neurosurgery. 1997;41:1111–1118. doi: ten.1097/00006123-199711000-00015. [PubMed] [CrossRef] [Google Scholar]
14. Lin JP, Goh Westward, Chocolate-brown JK, Steers AJW. Neurological outcome following neonatal postal service-haemorrhagic hydrocephalus: the effects of maximum raised intracranial pressure and ventriculo-peritoneal shunting. Child's Nerv Syst. 1992;8:190–197. doi: 10.1007/BF00262843. [PubMed] [CrossRef] [Google Scholar]
fifteen. McCallum J, Turbeville D (1994) Toll and upshot in a series of shunted premature infants with intraventricular hemorrhage. Pediatr Neurol (1992) 20:63–67 [PubMed]
xvi. Scarff TB, Anderson DE, Anderson CL. Caldwell CC (1983) Complications of ventriculo-peritoneal shunts in premature infants. Concepts Pediatr Neurosurg. 1992;four:81–89. [Google Scholar]
17. Tubbs RS, Smyth MD, Wellons JC, Blount JP, Grabb PA, Oakes WJ. Life expectancy of ventriculosubgaleal shunt revisions. Pediatr Neurosurg. 2003;38:244–246. doi: 10.1159/000069827. [PubMed] [CrossRef] [Google Scholar]
18. Sklar F, Adegbite A, Shapiro K, Miller K. Ventriculosubgaleal shunts: management of posthemorrhagic hydrocephalus in premature infants. Pediatr Neurosurg. 1992;18:263–265. doi: ten.1159/000120673. [PubMed] [CrossRef] [Google Scholar]
19. Rahman South, Teo C, Morris W, Lao D, Boop FA. Ventriculosubgaleal shunt: a treatment option for progressive posthemorrhagic hydrocephalus. Childs Nerv Syst. 1995;11:650–654. doi: 10.1007/BF00300724. [PubMed] [CrossRef] [Google Scholar]
20. Vinchon M, Lapeyre F, Duquennoy C, Dhellemmes P. Early treatment of posthemorrhagic hydrocephalus in low-birth-weight infants with valveless ventriculoperitoneal shunts. Pediatr Neurosurg. 2001;35:299–304. doi: 10.1159/000050441. [PubMed] [CrossRef] [Google Scholar]
21. Bruinsma N, Stobberingh EE, Herpers MJ, Vles JS, Weber BJ, Gavilanes DA. Subcutaneous ventricular catheter reservoir and ventriculoperitoneal drain-related infections in preterm infants and young children. Clin Microbiol Infect. 2000;6:202–206. doi: 10.1046/j.1469-0691.2000.00052.10. [PubMed] [CrossRef] [Google Scholar]
22. Kim DK, Uttley D, Bell BA, Marsh HT, Moore AJ. Comparison of rates of infection of two methods of emergency ventricular drainage. J Neurol Neurosurg Psychiatry. 1995;58:444–446. doi: x.1136/jnnp.58.iv.444. [PMC complimentary commodity] [PubMed] [CrossRef] [Google Scholar]
23. Richard Eastward, Cinalli Thousand, Assis D, Pierre-Kahn A, Lacaze-Masmonteil T. Treatment of mail-haemorrhage ventricular dilatation with an Ommaya's reservoir: management and issue of 64 preterm infants. Kid's Nerv Syst. 2001;17:334–340. doi: 10.1007/s003810000418. [PubMed] [CrossRef] [Google Scholar]
24. Steinbok P, Cochrane DD. Ventriculosubgaleal shunt in the management of recurrent ventriculoperitoneal shunt infection. Childs Nerv Syst. 1994;10:536–539. doi: x.1007/BF00335079. [PubMed] [CrossRef] [Google Scholar]
25. Linder N, Haksin O, Levit O, Klinger G, Prince T. Gamble factors for intraventricular hemorrhage in very low nascency weight premature ınfants: a retrospective case-control study. Pediatrics. 2003;111:590–595. doi: 10.1542/peds.111.5.e590. [PubMed] [CrossRef] [Google Scholar]
26. Gurtner P, Bass T, Gudeman S, Penix J, Philput C, Schinco F. Surgical management of posthemorrhagic hydrocephalus in 22 low-nascency-weight infants. Childs Nerv Syst. 1992;8:198–202. doi: 10.1007/BF00262844. [PubMed] [CrossRef] [Google Scholar]
27. Irish potato BP, Inder TE, Rooks V, Taylor GA, Anderson NJ, Mogridge Northward, et al. Posthemorrhagic ventricular dilatation in the premature babe: natural history and predictors of outcome. Arch Dis Child Fetal Neonatal Ed. 2002;87:37–41. doi: x.1136/fn.87.one.F37. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
28. Tortorolo One thousand, Luciano R, Papacci P, Tonelli T. Intraventricular hemorrhage: by, present and future, focusing on nomenclature, pathogenesis and prevention. Child's Nerv Syst. 1999;15:652–661. doi: 10.1007/s003810050454. [PubMed] [CrossRef] [Google Scholar]
29. Ventriculomegaly Trial Grouping Randomised trial of early borer in neonatal posthemorrhagic ventricular dilatation. Arch Dis Kid. 1990;65:3–x. doi: 10.1136/adc.65.1_Spec_No.3. [PMC free commodity] [PubMed] [CrossRef] [Google Scholar]
30. Cornips E, Van Calenbergh F, Plets C, Devlieger H, Casaer P. Utilize of external drainage for posthemorrhagic hydrocephalus in very low nascency weight premature infants. Kid's Nerv Syst. 1997;13:369–374. doi: 10.1007/s003810050102. [PubMed] [CrossRef] [Google Scholar]
31. Rhodes TT, Edwards WH, Saunders RL, Harbaugh RE, Little CL, Sargent SK. External ventricular drainage for initial treatment of neonatal posthemorrhagic hydrocephalus: surgical and neurodevelopmental outcome. Pediatr Neurosci. 1987;xiii:255–262. doi: 10.1159/000120339. [PubMed] [CrossRef] [Google Scholar]
32. Robertson CM, Svenson LW, Joffres MR. Prevalence of cerebral palsy in Alberta. Can J Neurol Sci. 1998;25:117–22. [PubMed] [Google Scholar]
33. De Vries LS, Rademaker KJ, Groenendaal F, Eken P, van Haastert IC, Vandertop WP, Gooskens R, Meiners LC. Correlation between neonatal cranial ultrasound, MRI in infancy and neurodevelopmental outcome in infants with a large intraventricular haemorrhage with or without unilateral parenchymal interest. Neuropediatrics. 1998;29(4):180–188. doi: 10.1055/s-2007-973558. [PubMed] [CrossRef] [Google Scholar]
34. Hamrick SE, Miller SP, Leonard C, Glidden DV, Goldstein R, Ramaswamy V, Piecuch R, Ferriero DM. Trends in severe brain injury and neurodevelopmental outcome in premature newborn infants: the role of cystic periventricular leukomalacia. J Pediatr. 2004;145(5):593–599. doi: 10.1016/j.jpeds.2004.05.042. [PubMed] [CrossRef] [Google Scholar]
35. Pomerance JJ, Richardson J. Neonatology for the clinician. 1. Norwalk: Applenton & Lange; 1993. pp. 425–435. [Google Scholar]
Putting a Shunt Into a Preemie Baby Brain
Source: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2974185/